- 1. (10 pts.) If $\lim_{n\to\infty} a_n = a$, prove that $\{a_n\}$ is bounded.
- 2. (20 pts.) A sequence a_n is defined by

$$a_1 = 1, a_{n+1} = a_n + \frac{1}{\sqrt[4]{n} a_n}.$$

Obtain the asymptotic behaviour of a_n as follows: write, for a function g, an analogue of the given recurrence; find g, and use your answer to guess the asymptotic behaviour of a_n . Finally, and most importantly, prove your answer.

- 3. (10 pts.) x, y > 0 and $x \ge y$, find $\lim_{n\to\infty} \left(\frac{2x^n + 7y^n}{4}\right)^{1/n}$ and prove your answer.
- 4. (20 pts.) A sequence x_n is bounded by 2 and satisfies the inequalities

$$|x_{n+2}-x_{n+1}|\leq \frac{|x_{n+1}^2-x_n^2|}{8}, n\in \mathbb{N}, x_1,x_2>0.$$

Prove that x_n is a convergent sequence.

- 5. (10 pts.) Let G be a non-empty open subset of R, and let $p \in G$. Let $E = G^c \cap (-\infty, p]$, where G^c is the complement of G in R, and $(-\infty, p] = \{x : x \le p\}$. Put $\alpha = \sup E$. Prove that α exists, and that $(\alpha, p] \subset G$. Prove also that $\alpha \notin G$.
 - 6. (30 pts.) (a) If b > a > 0 and n is a positive integer, prove that

$$0 < (n+1)(b-a)a^n < b^{n+1} - a^{n+1} < (n+1)(b-a)b^n.$$

(b) Let h be the function defined by

$$h(x) = \lim_{n \to \infty} (1 + \frac{x}{n})^n$$

where the limit is assumed to exist for all real x. [This has already been done in class, so you do not need to repeat it]. Using (a), prove that, for x > 0,

$$x \le h(x) - 1 \le xh(x).$$

(c) Prove that h(x+y) = h(x)h(y), for all real x, y..